THE FACES OF INNOVATION
Meeting the Challenge of Cancer
58-year old with late stage liver cancer, but benefited from medicine innovation

“I hope that our medical industry will continue to develop and save more cancer patients like me.”
Contents

Introduction ... 1

Enormous Global Burden and Challenges in China 2

Value and Development of Innovative Cancer Medicine 5

Future and Actions .. 10

Reference .. 12
Introduction

Cancer, refers to all malignant tumors, with biological characteristics such as abnormal cell differentiation and proliferation, loss of growth control, invasiveness and metastasis. It is one of the leading causes of death worldwide, led more than 22,000 deaths every day globally\(^1\). In China, about 10,000 patients are diagnosed with cancer every day, that is, about 7 patients with cancer are diagnosed every minute\(^2\).

The occurrence of cancer is increasing because of the growth and aging of the population. Meanwhile, the established risk factors for cancer, such as smoking, overweight, pathogen infection, physical inactivity, and changing reproductive patterns associated with urbanization and economic development, are increasing continuously. But more than half of cancer cases worldwide are caused by preventable causes. It means that the risk of cancer can indeed be eliminated or reduced by changing the behavior habit.
Economic and Epidemiology Burden of Cancer

Enormous Global Burden

The global economic toll of cancer is enormous\(^3\). The 13.3 million new cases of cancer diagnosed worldwide in 2010 are estimated to have cost $290 billion, and the 21.5 million new cancer cases anticipated to occur in 2030 are projected to cost $458 billion\(^4\). The number of diagnosed cases of cancer, number of cancer deaths and cancer mortality worldwide every year are on the rise. The number of cancer cases worldwide is expected to increase from 15.2 million in 2015 to 24 million in 2035\(^3\).

In 2012, it is estimated that 8.2 million\(^5\) died of the disease. Without significant new advances in cancer prevention, detection, and treatment. This number is projected to rise to 14.6 million\(^3\) in 2035. Based on a population study, among the young people aged from 20 to 39, the annual global incidence age-standardized rate (ASR) of cancer is 43.3/10,000 and the cancer-related death ASR is 15.9/10,000\(^6\).

Cancer is the second leading cause of death in the world. About 70% of cancer deaths occur in low-income and middle-income countries, and under this circumstance, mortality increase most rapidly, resulting in more challenges on fragile healthcare systems\(^7\). A liver cancer health-economics study involved 29 counties showed that mortality-to-incidence ratios (MIRs) are high in less developed countries compared with more developed countries (economically underdeveloped areas VS economically developed areas, 0.96 to 0.92). Favorable MIRs of countries are associated with high health expenditure and good WHO ranking\(^8\).

Looking at the overall cost of the disease, the International Agency for Research on Cancer (IARC)\(^9\), Data monitor Healthcare, World Cancer Report 2014 estimated that annual sales of cancer medicines by the top pharmaceutical companies in 2010 constituted 5% of the annual economic cost of cancer in 2010, for a total of USD 1.16 trillion. The most significant portion of costs is linked with hospitalization, premature death and poor rehabilitation and re-integration programs.

IMS Institute of Healthcare Informatics’\(^_\)s latest research showed that spending on cancer medicines only represented about 1% of the overall projected health care spending in U.S. 2015.
Cancer incidence and mortality have been increasing in China and it became the major public health problem in the country. With an estimated 4.29 million new cancer cases diagnosed in 2015, China accounted for over one fifth of the world’s cancer diagnoses. It estimated that 2.81 million people died from cancer in 2015. Malignant tumor is one of the leading cause of death among residents in China, with 27% and 23% respectively in urban and rural areas.

The incidence of cancer in China accounts for about 22% of that in the world, with a standardized incidence of 174.0/100,000 and a world average of 182.3/100,000. The incidence of cancer in China ranks the 74th in the world, while the cancer incident number is the largest all over the world.

The cancer profile in China is markedly different from those of developed countries. According to GLOBOCAN 2012 figures, prostate and breast cancer are the top male and female incidence ones in the developed countries while lung and breast cancer are the top ones in China.

Due to the differences of genetic, socio-economic, lifestyle and medical conditions and many other factors, there is an obvious difference of cancer profile between China and the United States, and the incidence of male prostate cancer and female breast cancer in the United States is significantly higher than our country, while the incidence of upper gastrointestinal cancer, e.g., gastric cancer, liver cancer and esophageal cancer, is much higher than the United States. In terms of the overall trend, the cancer incidence of male in the United States decreases by 2% per year from 2004 to 2013 and that of female remains stable. As per the statistical results published last year in our country, the overall malignant tumor incidence of male was relatively stable from 2000 to 2011, while that of female showed an increasing trend, with an average annual increase of 2.2%.

Challenges in China

Top 5 New Cancer Cases

Developed Countries*

1. Prostate
2. Lung
3. Colorectal
4. Urinary bladder
5. Stomach

China**

1. Lung
2. Stomach
3. Liver
4. Esophagus
5. Colorectal

Challenges in China

Top 5 New Cancer Cases

Developed Countries*

1. Prostate
2. Lung
3. Colorectal
4. Urinary bladder
5. Stomach

China**

1. Lung
2. Stomach
3. Liver
4. Esophagus
5. Colorectal

4.29 million new cancer cases

2.81 million people died from cancer

* Figure of 2012

** Figure of 2015
In recent years, China’s total expenditure on health spending continues to increase, and the total expenditure on health in China was 700 billion U.S. dollars in 2016, accounting for 6.2% of GDP, but still a big gap compared with developed countries such as the United States.

Another research done in China showed, the Chinese urban patients spent over 10,000 USD on esophageal and colorectal cancers treatment which were the highest level of expenditure. Lung and stomach cancers treatment followed at 9900 USD while liver and breast cancers treatment cost were around 8500 USD.

Lung cancer, leading cause of death, is the top cancer profile in China. It was estimated that there were 733.3 thousand new cases in China and the mortality cases were estimated at 610.2 thousand in 2015. According to a survey done in Beijing municipality recently, for those patients diagnosed in 2010, the 5-year survival rate was about 14.04%.

Liver cancer, a typical cancer profile in China, has the second lowest 5-year survival rate cancer in Beijing municipality in 2015 – 12.61%. The mortality rate of liver cancer got a significant decrease in 2006 which were contributed by the effective control of the infections.
Value of Innovative Cancer Medicine

Rapid technological advances and an emerging understanding of the underlying drivers of disease are changing the face of cancer. We now know that cancer is not a singular condition but, rather, a collection of diseases, each with unique characteristics and features. Cancer is more than 200 diseases all of which have different causes and treatments.\(^\text{18}\)

In recent years, researchers have made significant advances in gene mutations and associated factors that can drive the seemingly random formation and proliferation of tumor non-normal cells. At the same time, genetic markers may also identify patients at a greater risk of developing cancer. These learnings not only enable better screening and diagnoses but also drive the development of a new era of cancer treatments.

The latest facts and figures of 5-year survival rates in the United States\(^\text{5,19}\) showed, since 1975, the chances that a cancer patient will live 5 years or more have increased by 41% across cancers. According to a research\(^\text{20}\), 83% of survival gains in cancer are attributable to new treatments—including medicines.

China’s overall 5-year relative survival rate for all cancers combined was 36.9%\(^\text{10}\) in 2015 compared to 70%\(^\text{21}\) in the United States (2012) due to the lack of efficient treatment, difference of cancer profile etc. With this rate and 4 million new cancer cases annually in China, a 5-year (or more) delay for new oncology products translates to over 2 million patients who may not survive long enough to receive the appropriate treatment with innovative therapies which may have a life-saving or life extending impact.

\[\text{5-Year Survival Rates among the Most Common Cancers, 1975–2012}\]

\[\begin{array}{c|c|c|c|c}
\hline
\text{Cancer Type} & \text{1975} & \text{2012} \\
\hline
\text{Breast} & 75\% & 92\% \\
\text{Prostate} & 68\% & 100\% \\
\text{Colon/Rectum} & 50\% & 67\% \\
\text{Lung/Bronchus} & 12\% & 19\% \\
\hline
\end{array}\]

\[\text{5-Year Survival Rates in China, USA and UK}\]

\[\begin{array}{c|c|c|c}
\hline
\text{Country} & \text{1975} & \text{2012} \\
\hline
\text{China} & 36.90\% & 70\% \\
\text{USA} & 70\% & 54.30\% \\
\text{UK} & & \\
\hline
\end{array}\]
According to the Cancer Statistics, 201822, the mortality rate of cancer in United States continued to decline from 1995 to 2015, with an average annual decrease of 1.5% and overall decrease of 26%, saving 2.4 million patients.

IMS recent report23 showed that, China was one of the last three countries have few access to the new medication 2010–2014. Only 6 of 49 new medicines were approved to be on the market in China for patient access.
The complexity of cancer is reflected in the drug development process. Cancer medicines can take an average of 1.5 years longer to develop than medicines for other diseases. PhRMA recent report showed, there are more than 800 cancer medicines in development while 73% of cancer medicines have the potential to be the “Personalized Medicines”. Personalized medicine, sometimes referred to as precision or individualized medicine, is an emerging field of medicine that uses diagnostic tools to identify specific biological markers, often genetic, to help assess which medical treatments and procedures will be best for each patient.
WHO clinical trial database shows that till January 201826, there are 33407 cancer clinical trials undertaking in China, which is more than UK. United States has 114038 cancer trials, which is more than 3 times than China’ s.

As the end of 2017, there are more than 450 oncology clinical trials for NMEs in China27, including nearly 60 immuno-oncology trials involved PD–1/L1 (Note: not an exhaustive list, not including non-registered trials and trials at pre-clinical stage). As of Oct 23, 2017, 121 CAR–T studies are ongoing in China28–29. Currently, there are 619 qualified clinical trial sites in China, and roughly 1/3 are qualified for oncology studies.

In the past 10 years, the development of anti-cancer medicine has been developing rapidly. However, the doubled number of medicines in development did not bring about the increase of medicines approved to be on the market. The proportion of medicines approved to those in development decreased from 10.1\% in 2006 to 1.8\% in 2015, that is, 10 years ago, 1 of 10 medicine could be approved to be on the market, but now only 1 of 55 may be approved on average30.

New approaches31 that are adding to the cancer treatment toolbox include:

<table>
<thead>
<tr>
<th>Angiogenesis Inhibitors</th>
<th>Epigenetics</th>
<th>Immunotherapies</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tumors need blood vessels to grow and spread. Angiogenesis is the process by which new blood vessels are formed. Angiogenesis inhibitors work by preventing the formation of new blood vessels to stop or slow the growth or spread of tumors.</td>
<td>Researchers have discovered that cancer can be influenced by changes in gene expression caused not only by genetic mutations (changes in the DNA sequence) but also by chemical modifications of DNA (epigenetic changes). By targeting these “epigenetic” marks, genes associated with a cancer may be able to be turned “on” and “off”.</td>
<td>The body’s immune system may provide a platform for fighting cancer. Researchers are studying therapies, such as cancer vaccines and non-specific immunotherapies that enhance the immune system to help it prevent cancer or attack cancer cells.</td>
</tr>
</tbody>
</table>
Currently, the development of immuno-oncology is remarkable, and today, there are some 248 immuno-oncology medicines in the clinical pipeline in the United States. Some examples of the most recognized classes of cancer immunotherapies include adoptive cell therapy, immune checkpoint modulators, oncolytic virus therapy and vaccines.

Advances in Cancer Immunotherapy

Immuno-oncology medicines in development

<table>
<thead>
<tr>
<th>Medicine Type</th>
<th>Count</th>
</tr>
</thead>
<tbody>
<tr>
<td>Adoptive cell therapy</td>
<td>CAR-T 21</td>
</tr>
<tr>
<td>Immune checkpoint modulators</td>
<td>45</td>
</tr>
<tr>
<td>Oncolytic virus therapy</td>
<td>14</td>
</tr>
<tr>
<td>Vaccines</td>
<td>96</td>
</tr>
</tbody>
</table>
Future and Actions

Strategic leadership is needed to address several challenges and sustain current and new initiatives.

<table>
<thead>
<tr>
<th>Challenges</th>
<th>Scientific</th>
<th>Data</th>
<th>Capacity</th>
<th>Economic</th>
<th>Regulatory</th>
<th>Cultural</th>
</tr>
</thead>
<tbody>
<tr>
<td>Challenges associated with unanswered questions that stem from the scientific complexity of the disease</td>
<td>The lack of population-based cancer registries in China</td>
<td>Limited number of specialized professionals, inadequate cancer treatment in rural area</td>
<td>Diverging perceptions on that actual treatment value</td>
<td>Regulatory requirements for clinical trial designs not always adapted to new therapies</td>
<td>Culture differences influence cancer approach on: Patient’s role in the continuum of care, The prioritization of certain cancer. The importance given to prevention, screening and palliative care</td>
<td></td>
</tr>
</tbody>
</table>

Cancer is more than 200 disease, all of which have different causes and treatments

Population Base

- 15 doctors*
- 10,000 people
- 0.3 Billion
- Covered
- Un-covered
- WHO Figure in 2011

Total Cost for Cancer 2010 - $1.16 TRILLION

- 55.3 BILLION SALES OF CANCER MEDICINES
- 5% Available
- 95% Not Available
- Global: 49
- USA: 41
- China: 43

Facts

- Myths and perception of cancer which can present challenges to cancer control
- Death/helplessness - “cancer is always fatal”
- Fear - “cancer is a punishment”
- Pain and suffering
- Loss of control and independence
- Isolation - Silence surrounding the disease, especially gynecological and breast cancers

Support research to define the value for patients of treatment

- Foster consortiums and others ways to work together in order to share scientific knowledge

- Develop capacity in China to improve the quality and completeness of cancer registries
- Enhance the importance of robust database to monitor and evaluate the impact of specific interventions in targeted populations

- Improve and Increase the professionals skill and number
- Enhance the healthcare in rural area

- Increase international collaboration among stakeholders to define value of novel interventions

- Develop more adapted pathways that can keep pace with advances in cancer innovation
- Optimize the payment and procurement system to support the access to innovative medicines

- Increase the public knowledge of cancer prevention and treatment
- Development of more prevention programs and national action plans from the government
Focus and trend of tumor prevention and control study

◇ Complicated tumor pathogenesis and uncontrollable high risk factors result in the difficulty of tumor prevention in China. Generally, due to lack of effective screening technology and low levels of early diagnosis, it was late when the tumor is found. The difficulty of tumor treatment is caused by the poor treatment effect, high recurrence and metastasis rate, large side effect and poor precision. Few tumor treatment guidelines developed by China, varying levels of diagnosis and treatment in primary hospitals and low homogenization of diagnosis and treatment. All the mentioned are difficulties in cancer prevention and control study in China.

◇ The breakthrough points of tumor prevention and control in our country include reducing incidence, increasing rate of early diagnosis and survival and improving homogenization.

◇ Our country has issued related policies and fiscal measures to support cancer prevention and control. Relevant national projects in the “13th Five-Year Plan” are in process. Malignant tumor big data network construction has achieved initial success.
Reference

2. National Cancer Center, 2017 China City Cancer Update Data Report

18. http://www.cancerresearchuk.org/about/about cancer/what-is-cancer

23. IMS Institute for Health Care Informatics, Global Oncology Trend Report: A Review of 2015 and Outlook for 2020

25. PhRMA, Medicines in Development for Cancer, 2015

27. www.chinadrugtrials.org.cn

29. www.clinical trials.gov

31. PhRMA, Researching Cancer Medicines: Setbacks and Stepping Stones, 2014

33. IFPMA, Enhancing Access to Cancer Care, 2016

34. He J, Status and Trends of Tumors in China, 2017
“When your family is healthy, you have many problems; when someone in your family is sick, you have only one problem. That’s especially true for any family that has faced a cancer diagnosis.”

——Roy Blunt (U.S. Senator, 2016 Cancer Development Report)
About RDPAC

Under the China Association of Enterprises with Foreign Investment (CAEFI), the R&D-based Pharmaceutical Association Committee (RDPAC) is a non-profit organization made up of 40 member companies with pharmaceutical R&D capability.

Till now, the member companies have 49 plants and 31 R&D centers. They invest over RMB 8 billion per year in R&D in China.

The Chinese government, local companies and RDPAC members share a similar vision to see China become a leading global innovation partner. RDPAC welcomes the opportunity to continue to partner with the government to reach our joint aspiration for the benefit of Chinese patients.
Our Vision

HEALTHIER CHINA THROUGH INNOVATION

To be a valued partner in delivering the “Healthy China 2030” goal to improve the health and quality of life of people in China:

• Provide our high-quality/ innovative healthcare products and services in a socially responsible and commercially viable manner;

• Commit to securing patients timely access to innovative & high quality drugs;

• Achieve the highest standard of integrity for ethical research and business practice;

• Contribute to the growth of the biopharmaceutical sector in China;

• Support the development of a sustainable healthcare system in China.
<table>
<thead>
<tr>
<th>Company</th>
<th>Chinese Name</th>
<th>Brand Name</th>
</tr>
</thead>
<tbody>
<tr>
<td>Abbott</td>
<td>雅培</td>
<td>Ipsen</td>
</tr>
<tr>
<td>AbbVie</td>
<td>艾伯维</td>
<td>Kyowa Kirin</td>
</tr>
<tr>
<td>Allergan</td>
<td>艾尔建</td>
<td>LEO Pharma China</td>
</tr>
<tr>
<td>Amgen</td>
<td>安进</td>
<td>Lundbeck</td>
</tr>
<tr>
<td>Astellas</td>
<td>安斯泰来</td>
<td>Menarini</td>
</tr>
<tr>
<td>AstraZeneca</td>
<td>阿斯利康</td>
<td>Merck Serono</td>
</tr>
<tr>
<td>Baxter</td>
<td>百特</td>
<td>MSD</td>
</tr>
<tr>
<td>Bayer HealthCare</td>
<td>拜耳医药保健</td>
<td>Mundipharma</td>
</tr>
<tr>
<td>Boehringer Ingelheim</td>
<td>勃林格殷格翰</td>
<td>Novartis</td>
</tr>
<tr>
<td>Bristol Myers Squibb</td>
<td>百时美施贵宝</td>
<td>Novo Nordisk</td>
</tr>
<tr>
<td>Celgene</td>
<td>新基医药</td>
<td>Pfizer</td>
</tr>
<tr>
<td>Chiesi</td>
<td>凯西</td>
<td>Roche</td>
</tr>
<tr>
<td>Chugai</td>
<td>中外制药</td>
<td>Sanofi</td>
</tr>
<tr>
<td>Eisai</td>
<td>卫材</td>
<td>Servier</td>
</tr>
<tr>
<td>Eli Lilly</td>
<td>礼来</td>
<td>Shire</td>
</tr>
<tr>
<td>Ethypharm</td>
<td>爱的发制药</td>
<td>Sumitomo</td>
</tr>
<tr>
<td>Gedeon Richter</td>
<td>匈牙利吉瑞大药厂</td>
<td>Takeda</td>
</tr>
<tr>
<td>Gilead</td>
<td>吉利德</td>
<td>UCB</td>
</tr>
<tr>
<td>GSK</td>
<td>葛兰素史克</td>
<td>Xian–Janssen</td>
</tr>
<tr>
<td>Helsinn</td>
<td>赫尔森</td>
<td>Zambon</td>
</tr>
</tbody>
</table>

RDPAC Member List

(Updated: January 2018)